Methane Storage in Nanoporous Media as Observed via High-Field NMR Relaxometry

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Field-cycling NMR relaxometry with spatial selection.

Fast field-cycling MRI offers access to sources of endogenous information not available from conventional fixed-field imagers. One example is the T(1) dispersion curve: a plot of T(1) versus field strength. We present a pulse sequence that combines saturation-recovery/inversion-recovery T(1) determination with field cycling and point-resolved spectroscopy localization, enabling the measurement ...

متن کامل

MWCNT@MIL-53 (Cr) Nanoporous Composite: Synthesis, Characterization, and Methane Storage Property

In this paper, porous metal−organic frameworks (MIL-53 [CrIII (OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x]) were hydrothermally synthesized and, then, a hybrid composite of these synthesized porous metal−organic frameworks (MOF) with acid-treated multi-walled carbon nanotubes (MWCNTs) was prepared. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunau...

متن کامل

Metal-diboride nanotubes as high-capacity hydrogen storage media.

We investigate the potential for hydrogen storage of a new class of nanomaterials, metal-diboride nanotubes. These materials have the merits of a high density of binding sites on the tubular surfaces without the adverse effects of metal clustering. Using the TiB2 (8,0) and (5,5) nanotubes as prototype examples, we show through first-principles calculations that each Ti atom can host two intact ...

متن کامل

Transition-metal-ethylene complexes as high-capacity hydrogen-storage media.

From first-principles calculations, we predict that a single ethylene molecule can form a stable complex with two transition metals (TM) such as Ti. The resulting TM-ethylene complex then absorbs up to ten hydrogen molecules, reaching to gravimetric storage capacity of approximately 14 wt %. Dimerization, polymerizations, and incorporation of the TM-ethylene complexes in nanoporous carbon mater...

متن کامل

Exploring the Limits of Methane Storage and Delivery in Nanoporous Materials

The physical limits for methane storage and delivery in nanoporous materials were investigated, with a focus on whether it is possible to reach a methane deliverable capacity of 315 cm(STP)/cm in line with the adsorption target established by the ARPA-E agency. Our efforts focused on how both geometric and chemical properties, such as void fraction (Vf), volumetric surface area (Sv), and heat o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Applied

سال: 2015

ISSN: 2331-7019

DOI: 10.1103/physrevapplied.4.024018